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A COMPUTERIZED SYMBOLIC INTEGRATION TECHNIQUE FOR 

DEVELOPMENT OF TRIANGULAR AND QUADRILATERAL 

COMPOSITE SHALLOW-SHELL FINITE ELEMENTS 

C. 	M. Andersen* and Ahmed K. Noor** 
Langley Research Center 

SUMMARY 

Computerized symbolic integration i s  used in conjunction with group-theoretic tech­
niques to obtain analytic expressions for  the stiffness, geometric stiffness, consistent 
mass ,  and consistent load matrices of composite shallow shell structural  elements. The 
elements are shear  flexible and have variable curvature. A stiffness (displacement) 
formulation i s  used with the fundamental unknowns consisting of both the displacement and 
rotation components of the reference surface of the shell. Both triangular and quadrilat­
eral elements are developed. The quad-The triangular elements have six and ten nodes. 
r i la teral  elements have four and eight nodes and can have internal degrees of freedom 
associated with displacement modes which vanish along the edges of the element (bubble 
modes). 

The stiffness, geometric stiffness, consistent mass,  and consistent load coefficients 
a r e  expressed as linear combinations of integrals (over the element domain) whose inte­
grands are products of shape functions and their  derivatives. The evaluation of the ele­
mental matrices is  thus divided into two separate problems - determination of the coef ­
ficients in the linear combination and evaluation of the integrals. The latter problem can 
be computationally the more t ime consuming and the present study focuses on simplifi­
cations and means of reducing the effort involved in this task. 

The integrals are performed symbolically by using the symbolic-and-algebraic­
manipulation language MACSYMA. The efficiency of using symbolic integration in the 
element development is demonstrated by comparing the number of floating -point ar i th­
metic operations required in this  approach with those required by a commonly used 
numerical quadrature technique . 

_ _  _- ~ - . -

*Senior Research  Associate in Mathematics and Computer Science, College of 
William and Mary, Williamsburg, Virginia. 

**Research Professor  of Engineering, Joint Institute for Acoustics and Flight
Sciences, George Washington University, Hampton, Virginia. 



INTRODUCTION 

Although considerable l i terature has  been devoted to  the analysis of isotropic shells 
using doubly curved finite elements, investigations of the finite-element analysis of lami ­
nated composite shells are rather  limited in extent. The reliable prediction of the re­
sponse of composite shells often requires  the use of high-order shear  -flexible elements 
with the consequent increase in the developmental effort of the elemental matrices (the 
stiffness, geometric stiffness, and mass  matrices).  

In most of the published work, numerical integration was used fo r  the evaluation of 
the element stiffness matrices.  Although numerical integration is both simple and adapt -
able t o  computer programing, it can become computationally very expensive, particularly 
for  higher order  elements. This drawback has been recognized and improvements have 
been suggested (refs. 1 and 2); however, the difficulty has not been overcome. This ra i ses  
the question as to  whether an alternative approach such as using analytic (closed form or 
symbolic) integration in the element development is computationally more  efficient. The 
present study addresses  this question. More specifically, the objective of this paper i s  to 
demonstrate the computational advantages resulting f rom the use of computerized sym­
bolic integration in conjunction with group-theoretic techniques (or symmetry transforma­
tions) in the development of triangular and quadrilateral shallow shell elements. 

The analytical formulation is based on a form of the shallow-shell theory modified 
such that the effects of shear  deformation and rotary inertia are included. Indicia1 nota­
tion is used throughout the development, since it is particularly useful in identifying the 
symmetries. The integrals are performed symbolically by using the symbolic-and­
algebraic-manipulation language MACSYMAl (refs. 3 and 4). This is done in order  to re­
duce the tedium of analysis and to decrease the likelihood of e r ro r s .  The use  of group­
theoretic techniques (or symmetry transformations) resul ts  in considerable reduction in 
both the amount of analytic computation needed and the size of the programs for numeri­
cal computation. 

SYMBOLS 

ijk i j.ijkt 
,Bo ,Cap basic integrals defined in equations (14) to  (16) 

an,dn,en representations of dihedral groups defined in equations (56), (60), (61), and (69) 

~- ~ ~ ~ 

lThe MACSYMA system is being developed by the Mathlab group at Massachusetts 
Institute of Technology under the support of ARPA (Advanced Research Projects  Agency
of the U.S. Department of Defense) through Office of Naval Research Contract 
No. NO0014 -70-A-0362-001. 
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[CI 8 by 8 matrix of shell  stiffnesses 


C,pyp,C,3p3 extensional and t ransverse shear  st iffnesses of shell, respectively 


(k) (k)
Capyp7Ca3p3 extensional and t ransverse shear  st iffnesses of kth layer of shell 

CCJ portion of shell  boundary over which tractions are prescribed 

D,pyp bending stiffnesses of shell  

EL,ET elastic moduli in direction of fibers and normal to fibers, respectively 

permutation symbol 

F,pYP stiffness interaction coefficients of shell 

GLT,GTT shear  moduli in plane of f ibers  and normal t o  plane of fibers,  respectively 

-ij - i j  

&po,Q,p1 functions of coordinates of corner nodes of elements 


He weighting coefficients for  numerical quadrature 

hk,hk-l distances from reference (middle) surface to  top and bottom surfaces  of kth 
layer, respectively 

[KI element stiffness matrix 

K g  stiffness coefficients of shell element 
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[Kl geometric stiffness matrix 

-
K;$ geometric stiffness coefficients of shell element 


ka!p curvatures and twist of shell  reference surface 


kLp nodal values of kap 


L1,L2,z;1,z2,z logarithmic functions defined in equations (33), (38), and (42) 


[MI consistent mass  matrix 


MYJ consistent mass  coefficients of shell  element 


.3a!p prescribed bending stress resultants on shell boundary 


mo,ml,m2 density parameters  of shell 


Ni shape o r  interpolation function 

-
4Ya prescribed extensional (in-plane) stress resultants on shell boundary 

G p  relative magnitudes of initial s t r e s s  resultants (prestress  components) 

"a! unit outward normal to shell boundary 

(PI consistent 1oad vector 

Pi consistent load coefficients 

Pa!,P external load intensities in coordinate directions 

PL,P' nodalvalues of pa! and p 
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% prescribed t ransverse shear  stress resultants on shell boundary 

ijkf 'RijkP,Rfkf 
coefficients associated with A- integr alsR1 2 

*y,QF,Q'j.,Q,' integers associated with representative A-integrals 

r number of shape functions associated with an element 

ijk
9s2s 1  

ijk
$3

ijk 
coefficients associated with B-integrals 

-
integers associated with representative B-integralsS T , S ~ , S ~ , S ~  

S ratio, U2/U1 


-

S a quantity defined in equation (39) 


T kinetic energy of shell 

T transpose symbol 

Tij,Tij,Tij3 ,  Tij coefficients associated with C-integrals 

FTqm,FJF 
integers associated with representative C -integrals 

t ratio, UQ/UI 

-
t a quantity defined in equation (39) 

U st ra in  energy of shell  

U0 strain energy due to p re s t r e s s  

U ~ , U ~ , U Qfunctions of nodal coordinates 
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UQ!,w displacement components in coordinate directions (see fig. 1 )  

l inear functions of coordinates of corner  nodes 

W work done by external forces  


XQ!9x3 orthogonal coordinate system (see fig. 1 )  


?& values of x, fo r  corner nodes 

x in-plane load parameter  

P number of numerical quadrature points 

v~~ Poisson's ratio measuring s t ra in  in T direction due to uniaxial normal 
stress in the L direction 

<CY local dimensionless coordinates in the shell domain 

l-I(uQ!,w,@ Q!1 functional defined in equation (1) 

P S(k) density of kth layer of shell 

097 permutations 

@a rotation components 

{+I nodal displacement vector 

+; nodal displacement parameters  

s-2 shell domain 

&) shell element domain 
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W circular frequency of vibration of shell  

acr = a/ax, 

The range of the different indices i s  as  follows: 

Lower case Latin indices: 1 - r 

Upper case Latin indices: 1 - 5 

Greek indices: 172 

The f inite-element models are designated: 

SQr stiffness formulation, quadrilateral element, r shape functions p e r  funda­
mental unknown 

STr stiffness formulation, triangular element, r shape functions pe r  fundamental 
unknown 

The groups are designated: 

Q3 six-element dihedral. group 

-34 eight -element dihedral group 

FINITE-ELEMENT FORMULATION 

The analytical formulation is based on a fo rm of the shallow-shell theory with the 
effects of shear  deformation, anisotropic material  behavior, rotary inertia, and bending-
extensional coupling included. (See ref. 5.) The prebuckling state of the shell i s  assumed 
to  be a momentless state. A displacement (stiffness) formulation i s  used in which the 
fundamental unknowns (dependent variables) consist of five generalized displacements -
the two tangential displacement components ua ,  the normal displacement w, and the two 
rotation components @,. (See fig. 1.) Throughout this paper the range of the Greek in­
dices is 1,2 and it i s  implied that any index Greek o r  Latin, which appears twice in the 
same t e rm is to be summed over. 
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(a) Displacements and loads. (b) Rotations. 

Figure 1.- Shell element and sign convention. 

Governing Functional of Shell 

The fundamental unknowns are assumed to  vary sinusoidally with angular velocity 
w (the circular frequency of vibration of the shell). The functional used in the develop­
ment of the elemental matr ices  is  given (see ref. 6) by 

where U and Uo are the s t ra in  energies due to deformation and prestress ,  W is the 
potential energy of external forces,  and T i s  the kinetic energy of the shell. 

The expressions of U, Uo, W, and T in t e rms  of the generalized displacements 
are 
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and 

where Capyp, Dabyp, and F,pyp are the extensional, bending, and stiffness interac­
tion coefficients of the shell; Ca3p3 are the t ransverse shear  stiffnesses of the shell 

(see appendix A); kap are the curvature components and twist of the shell surface; 
k d g p  are the initial stress resultants (prestress  field), X is the in-plane load param­
eter; pol and p are the external load components in the coordinate directions xol and 
x3, respectively; mo, m l ,  and m2 are density parameters  of the shell  defined in 
appendix A; 2aa, dol,, and are prescribed extensional, bending, and t ransverse 
shear  s t r e s s  resultants, respectively; S2 is the shell domain; ca i s  the portion of the 
boundary over which tractions are prescribed; and na i s  the unit outward normal to the 
boundary. 

Finite-Element Discretization 

The shell  domain C2 is partitioned into triangular o r  quadrilateral subdomains 
With each i s  associated a finite element f o r  which the fundamental unknowns 

are approximated by expressions of the form 

where N' are the shape (or interpolation) functions; q> (J = 1 - 5) are displacement 
parameters ;  r equals the number of shape functions in the approximation; and a re­
peated lower case Latin index denotes summation over the range 1 - r. Each set of dis­
placement parameters  qi1,+i2 9 . '  ., qi i s  either associated with a node of the element or  
with a bubble function. 

The curvatures kap and the external load components pa, and p are approxi­
mated by the same shape functions used in approximating the generalized displacements, 
that is, 
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pa = Nipb 

= Nipi I 
iwhere k,p, ph,  and pi are the nodal values of k,,, pa, and p, respectively. To 

simplify the development of the elemental matrices,  it i s  assumed in subsequent sections 
that the shell stiffnesses C's, F's, and D's as well as the density parameters  mo, 

m l ,  m2, and the initial stress resultants are constants within each element. Equa­
tions (2) to (5) can be expressed in t e r m s  of the shape functions Ni and the nodal param­
eters +: as follows (for simplicity, the line integrals in eq. (r)are assumed t o  make no 
contribution) : 

Elements PD 
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The governing equations for  each element are obtained by applying the stationary 
conditions for the functional in equation (1). This leads to  the following se t  of equations: 

i jwhere KIJ are. the stiffness coefficients; -iKIJj are the geometric stiffness (prestress)
icoefficients; MiJ and PI are consistent mass  and load coefficients; and X i s  an in-

plane loading parameter  used to determine the buckling load o r  the magnitude of the p re ­
s t ress .  The formulas for the aforementioned stiffness, mass  and load coefficients are 
given in appendix B. For  static stress analysis problems, X = w = 0; and for  free vibra­-
tion problems, X = 0 and PIi = 0. The K's, K's, and M's a r e  completely symmetric 
under the interchange of one pair  of indices for another, each pair  of indices consisting of 
a superscript  and the subscript just  beneath it. 

To write equation (12) in matrix form, the f i r s t  superscript-subscript  pair  of each-
of the K's, K's,and M's  defines the row number and the second pair  defines the col­

i j
umn number. F o r  example, the t e rm KIJ will be located in the [ 5(i - 1)+ 11th row and 
in the [5(j - 1) + J]th column of the element stiffness matrix. Similarly, the P's and 
V s  can be written in column vector form. Thus, equation (12) becomes 

Representation of Fundamental Unknowns 

Two triangular and four quadrilateral conforming elements were developed for  the 
present study. The nodes of these elements a r e  shown in figure 2, and their  character is­
t ics  are summarized in table I. The triangular elements developed have six o r  ten nodes 
and the quadrilateral elements have four or  eight nodes. For  the two triangular elements 
and fo r  two of the quadrilateral  elements the range r of the superscr ipts  in equations (6) 
and (7) is the number of nodes (that is ,  6, 10, 4, or 8). For  the two remaining quadrilat­
e ra l  elements, r i s  one greater  than the number of nodes (that is, r = 5 or  9). The 
additional shape function, which vanishes along the entire element boundary and i s  not 
associated with a node, i s  usually re fer red  to  as a "bubble function." 

Since for  each element all five of the fundamental unknowns are approximated by the 
same set of shape functions (see eq. (6)), the number of degrees of freedom pe r  element i s  
5r  and thus for  the elements developed the element stiffness matr ices  [K] of equation (13) 
range in size from 20 by 20 (for SQ4) to  50 by 50 (for STlO). 
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(a) SQ4 and SQ5. (b) ST6. 

(c) SQS and SQ9. (d) ST10. 

Figure 2. - The finite elements used in the present study. 

The nodal parameters  qi introduced in equation (6) were selected to be values of 
the fundamental unknowns at the different nodes, and the approximations to  the fundamental 
unknowns are continuous ac ross  the element boundaries. 

COMPUTATION OF ELEMENT CHARACTERISTICS 

i j  - i j  i j  iEach component of the a r r ays  KIJ, KIJ, MIJ, and PI is a linear combination of 
integrals whose integrands are products of shape functions and their  derivatives. (See 
appendix B.) If a constant shape function No = 1 i s  introduced, then the integrals in 
appendix B can be reduced to  linear combinations of integrals of the following three types: 

.ijkQ = NiNjNkNf dS2 (i, j ,  k, e = 0 - r) (14) 

( i , j = O - r ;  k = l - r )  
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The evaluation of the stiffness, mass,  and load coefficients can be divided into two 
separate problems: (a) the determination of the coefficients in the linear combinations 
and (b) the evaluation of the A-, B-, and C-integrals. Since problem (a) i s  relatively 
simple, the present study focuses on simplifications and means of reducing the effort in­
volved in problem (b). 

EVALUATION OF INTEGRALS 

F o r  the evaluation of the A-, B-, and C-integrals (eqs. (14) to  (16)), it is convenient 
to introduce a dimensionless local coordinate system (a! = 1,2) in t e rms  of which the 
limits of integration are simply expressed. Fo r  triangular and quadrilateral elements, 
the ta! are chosen to  be the area and quadrilateral coordinates, respectively. (See 
ref. 7 and fig. 3.) In the present  study, the shape functions are simply polynomials in ta! 
(see appendix C) and the Cartesian coordinates xa! are linear o r  bilinear functions of 

5a!. 


5, = -1. 

5, = 1.0 \ 

(a) Quadrilateral. (b) Triangular. 

Figure 3. - Local coordinate systems for  quadrilateral and triangular finite elements. 

The relations between the Cartesian and local dimensionless coordinates are 
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and 

the Jacobian determinant and aty/ax, is the inverse of the 
Jacobian mat&. See ref. 8 for  more explicit expressions for '  a(x1,x2)/a(<1,<2) and 
a/ax, for  selected cases. 

Through the use of equations (17) and (18), the A-, B-, and C-integrals can be ex­
pressed in t e rms  of the local coordinates <, as 

The A-integrals a r e  completely symmetric under interchange of indices, and the 
B- and C -integrals satisfy the following symmetry relations: 

Thus, the number of numerically distinct A- ,  B-, and C-integrals in equations (19) to (21) 

is (r+4)!/(4!r!), l ( r+ l ) ( r+2)(2r ) ,and 1(2r)(2r+l),respectively. (See ref. 9 and table II.)
2 2 


When the integrands of equations (19) to (21) a r e  polynomials in to, the analytic 
(symbolic) evaluation of the corresponding integrals i s  a straightforward task. Examina­
tion of equations (19) and (20) reveals that this is  the case for all the A - and B-integrals. 
The integrands of the C-integrals (eq. (21)) are polynomials in <, only when the Jaco­
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bian determinant a(xl,x2)/a ([1,52) i s  independent of e a ,  and this i s  the case for t r i ­
angular and parallelogram elements. F o r  a general  quadrilateral element, the Jacobian 
determinant i s  l inear in tQ!,and consequently, the C -integrals are complicated functions 
of the nodal coordinates and involve logarithms. 

The forms of the analytic expressions for the A-, B-, and C-integrals for  both the 
triangular and quadrilateral elements are given subsequently. 

Triangular Elements 

For  triangular finite elements, the A-, B-, and C-integrals may be expressed as 

7v a 2  

r 

where the R's, S's, and T ' s  are rational numbers (independent of the nodal coordi­
nates) and are discussed later; the V's are functions of the nodal coordinates given by 

The quantity U1 i s  the area of the triangular element and is given by 

1 2and xp, xp) and xp3 are the coordinates of the corner nodes numbered as in figure 2(b). 

Since the five quantities U1, Val,  and V,, are functions of the nodal coordi­
nates, they need t o  be evaluated for  each element. On the other hand, the R's, S's, and 
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T's are the same for  all triangular elements having the same number of nodes. A s  will 
be demonstrated in subsequent sections, the evaluation of the A-, B-, and C-integrals 
using equations (23) to (25) is computationally more efficient than using a numerical quad­
ra ture  technique wherein the integrands have to  be evaluated at each of the quadrature 
points, multiplied by the weighting coefficients, and then summed. 

Quadr ilatera1 Elements 

For quadrilateral elements, the A-,  B-, and C-integrals may be expressed as 

I I 

i
I r 

I 

where the R's and S's are rational numbers (independent of the nodal coordinates) and 
are discussed later;  the U's and V's  a r e  functions of the nodal coordinates given by 

e@ ( xP - x6 + x p  -xp) 
V a l  = 

4 4 1
I 

(-XI + x2 + x$ - x$) 

v a 2  = 4 -3 
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and 

A1 

3and x,,1 x,,2 xa, and x,4 are the coordinates of the corner nodes numbered as in fig­
u re  2(a). The quantity U 1  is equal t o  one-fourth the area of the element. 

The Fp's in equation (30) are complicated rational functions of s, t, and the V's, 
and the L's are logarithmic functions given by 

L J 

where s and t are dimensionless parameters  given by 

(34) 

The relations between the Cartesian coordinates x, and the local coordinates 5, in­
volve the U's and V's of equations (31) and (32). They are 
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and 

The numerical evaluation of the A-integrals and B-integrals by using equations (28) 
and (29) is a straightforward task. However, since the SF’s in equation (30) typically 
become infinite in the limit as s and/or t goes to  zero, and since elements with small  
or  vanishing s or t must often be evaluated, equation (30) is not a satisfactory form to 
use  for  the numerical evaluation of the C -integrals. 

For the C-integrals used in this study, the difficulties are overcome by casting 
equation (30) in the form 

r 
-ij
3-crB2 (37) 

where 

-
tL2(S,t) = (Q)-5[Lz(s,t) - 25 - (:- + 2 s  2)-j 

and 

Since only convex quadrilaterals (those for  which the Jacobian (36) does not vanish 
anywhere within the domain of the elements) are of interest, equation (37) needs to be 
evaluated only for  r and s satisfying the condition 
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(Elements with Is( + It1 = 1 have three of their  four vertexes lying on a straight line; 
that is, they have degenerated into triangles.) The 9 ' s  are free of singularities except 
at s = &1 and t = * l ,  and their  numerical evaluation is straightforward. Elements with 
s o r  t equal o r  nearly equal t o  one are not of interest  anyway. 

i 
Even though the functions L1 and L2 are free of singularities within the region 

specified by equation (40), they must be evaluated with care.  Equation (38) i s  used di­
rectly for  numerical evaluation only if neither s nor t is small;  otherwise, Taylor 
series expansions are used. These series expansions were derived by using MACSYMA 
and are par t  of the computer program listed in reference 11. 

Although the A-, B-, and C-integrals for  any quadrilateral element can be numeri­
cally evaluated by using equations (28), (29), and (37), simplified forms for  these integrals 
should be used to  improve computational efficiency whenever the element i s  a trapezoid or 
a parallelogram. 

Trapezoidal Elements 

Trapezoidal elements a r e  characterized by the vanishing of t = U3/U1 o r  else 
s = U2/U1. In the case t = 0, equation (37) reduces to 

where the @s are functions of s and the V's, and 

-
L(s) = s-5 [log -- 2 s  

3 
s(; 1s"i "1 

Similar expressions hold for  the case s = 0 .  A Taylor s e r i e s  expansion is used to  eval­
uate the function E when i t s  argument i s  small .  

Parallelogram Elements 

Parellelogram elements (and thus rectangular elements) are characterized by the 
vanishing of both s and t. The formulas for  the A-, E-, and C-integrals over quadri­
lateral elements (eqs. (28) to  (30)) reduce in the parallelogram case to 

.ijkQ = R 1ijkQ U1 (43) 
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Bijk - lSyk s i jv  7 (44)a - 3 
v a 3  

where the R's, S's, and T's are rational numbers. These expressions, like those fo r  
the triangular elements (eqs. (23) to  (25)), are entirely free of logarithms. 

GROUP-THEORETIC TECHNIQUES 

The evaluation of the A-, B-, and C-integrals can be divided into two distinct phases: 
(1) obtaining analytic (or algebraic) expressions for  the integrals using the symbolic-and­
algebraic-manipulation language MACSYMA and (2) numerically evaluating the resulting 
expressions. These two phases will henceforth be re fer red  to  as the symbolic and numer­
ical phases, respectively. 

Because of the way in which the integrals Ba
ijk depend on the values of the Greek 

index a (see eq. (20)), separate  symbolic integrations for  fixed i,j,k are not required 
for  BYk and BYk. Similarly, for  given i , j  only one symbolic integration is required 

i j  i j  i jf o r  the set of integrals Cll, C12, ,ij21, and C22. Thus, by this consideration and by 
taking into account the symmetries of the Latin indices in equations (19), (20), and (21), 
the number of symbolic integrations required to  determine the coefficients in the expres­
sions (eqs. (23) to  (25) and eqs. (28), (29), (37), (41), and (45)) for  the A-, B-, and C ­
integrals would be (r+4)!/(4!r!), L(r+l)(r+2)(r) ,  and -(r)(r+l), respectively. (The 4's1 

2 2 
in eq. (41) and the T ' s  in eq. (45) do not require separate  symbolic integrations since 
they can be determined from the g ' s  of eq. (37)). Thus, for  the six elements developed 
in this study, a total of 4647 symbolic integrations would be required. The evaluation of 
such a large number of integrals symbolically, some of which are very complicated, seems 
discouraging even with the aid of a computer, and it is highly desirable to  reduce this num­
ber.  This reduction can be accomplished for  the triangular and quadrilateral elements 
studied herein by taking advantage of the similari t ies in algebraic form among the various 
integrals, viz, by employing the theory of group transformations (refs. 9 and 10). 

20 




~ . . _..._.,..,
I 

Basic Idea of Group-Theoretic Techniques 

The essential idea of the group-theoretic techniques employed herein is that a rela­
tively small  number of the A-, B-, and C-integrals are selected as "representative" inte­
grals  for which symbolic calculations a r e  performed directly. Each of the other A-, B-, 
and C -integrals is related to one of these representative integrals by symmetry consider ­
ations. Therefore, the symbolic phase of computation reduces to  obtaining analytic ex­
pressions for just the representative integrals. The numbers of representative integrals 
required for  each of the various elements considered in the present study i s  given in 
table 11. The total number of representative integrals is 886; thus, the group-theoretic 
techniques reduce the number of symbolic calculations to  less than one-fifth of what it 
would otherwise have been. 

In this study, group transformations are applied by using two different (but mathe­
matically equivalent) procedures.. The f i r s t  procedure is used for  the sets of integrals 
that can be expressed as linear combinations (with numerical coefficients) of a small  num­
ber  of functions of the nodal coordinates. In this case the output from the symbolic phase 
of computation consists of a r r a y s  of integers obtained from the symbolic integration of 
representative integrals. In the numerical phase the coefficients for  all the integrals r e ­
lated to these representative integrals are numerically evaluated and stored for repeated 
subsequent use. As a result, the evaluation of these integrals i s  very fast  and only a rel­
atively small  amount of data needs to be transferred from the symbolic phase of computa­
tion to  the numerical phase. This procedure was found to be the more efficient one for 
evaluating the A- and B-integrals (for all elements studied herein) and the C-integrals for 
the triangular and parallelogram elements. However, it would be very cumbersome to  t ry  
to apply this procedure to the remaining C-integrals. 

Fo r  evaluating the C -integrals for  nonparallelogram quadrilateral elements, the sec ­
ond procedure involving group transformations w a s  used. Since these integrals have more 
complicated forms, the output f rom the symbolic phase of computation consisted of alge­
braic expressions for  the representative integrals ra ther  than just a r r a y s  of coefficients. 
These algebraic expressions are used for the numerical evaluation of the nonrepresenta­
tive a s  well as of the representative C-integrals. This i s  done by applying suitable group 
transformations t o  the variables contained in these expressions before evaluating them. 
By using the same algebraic expressions for several  related integrals, fewer  symbolic 
calculations are performed and computer memory requirements for  the numerical phase 
of computation are reduced. 

The second procedure could have been applied to all the integrals but with some loss 
in the computational efficiency. The difference in the way the two procedures would apply 
to  the A- and B-integrals is that by using the f i r s t  procedure, the coefficients (the R's 
and S's) are transformed (and this needs to be done only once), and by using the second 
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procedure the functions of the nodal coordinates (the U's and V s )  would be transformed 
(and this would have to  be done for  each element). 

Before discussing the application of these two procedures in detail, the concept of 
dihedral groups is briefly reviewed. 

Dihedral Groups 

For triangular and quadrilateral elements the symmetry groups which serve  to re­
late the various A-, B-, and C-integrals to  their  representative integrals belong to  an in­
finite family of groups called dihedral groups, (See ref. 10.) For triangular elements 
the relevant group is the six-element dihedral group (denoted by Cos), and for  quadrila­
teral elements it i s  the eight-element dihedral group (denoted by 9 4 ) .  The group CD3 
is the symmetry group of an equilateral triangle, and the group cD4 i s  the symmetry 
group of a square. These groups are relevant because any triangular element can appear 
as an equilateral triangle when viewed in an appropriate local coordinate system, and any 
quadrilateral element appears  as a square as viewed in the quadrilateral coordinate sys­
tem of figure 3(a). 

To each element in the symmetry group there  corresponds a linear transformation 
on the local coordinate system which maps the element domain onto itself. Let such a 
transformation be symbolized by 

This transformation induces a transformation on any function f(51,52) in the sense that 

where 

In particular, the se t  of shape functions N' = N1(51,.$2), i = 1 - r, has the property that 
each transformed shape function (Ni)' is identical to  one of the untransformed functions 
~ j .In fact 
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where T is a permutation on the set of r indices. Since the indices on the shape func­
tions, in effect, form the superscr ipts  on the A's, B's, and C's, the effect of the group 
transformations is t o  induce transformations on these superscripts.  

To each element in the symmetry group, there a lso corresponds a permutation 0 

on the coordinates of the corner nodes 

i = 3 for  triangular 

i = 4 quadrilateral elements 

These permutations induce l inear transformations on various sets of functions of the xi. 
Examples of such sets are U1; U2 and U3; V a l ;  V,, and V,3; r and s; L1;- -
La and L3; L1; La and E3; etc. Thus, for example, 

and 

where a i s  +1o r  -1 and d i s  a 2 by 2 matrix. Both a and d depend on the particu­
lar group transformation. In this way certain transformations on the superscripts of the .. 
Aijke,  Bgk, and C&. are related to l inear transformations on the variables contained 
in the formulas for these integrals. 

F i r s t  Procedure Based on Group Transformations 

A s  mentioned previously, group transformations are employed in two different ways. 
The f i r s t  procedure based on group transformations is used to evaluate the R's, S's, 
and T ' s  in equations (23) to (25), (28) to (29), and (43) to (45). 

F o r  triangular elements the formulas used to  evaluate these coefficients are 
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and 

where the d's are matrices which represent group transformations. The d's are 
given by 

In equations (53) to (55) T denotes transpose, and the Q's ,  S's, and g ' s  are 
integers obtained from the symbolic integration of representative integrals. 

Fo r  quadrilateral elements the formulas used t o  evaluate the R's, S's, and T's 
are 
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where the a's and d's  represent group transformations and are given by 

J 

and the X?'s, S ' s ,  and 3''s a r e  again integers obtained from the symbolic integration 
of repre sentat ive integrals. 

- -
In equations (53) to (55) and (57) to (59) the superscripts m, m, m, n, n, and 

in the right-hand members must be understood as integer-valued functions of the super­
scr ipts  in the corresponding left -hand members,  that i s  

-
m = m(i,j,k,e) m = iii(i,j,k) 

-
n = n(i , j ,k,Q) n = ii(i,j,k) 

The superscripts m, Ei, and indicate which representative integral is  being re fer -
-enced, and the superscripts n, n, and indicate which group transformation i s  being- -

applied. The dependence of the superscripts m, m, m, n, n, and 5 on the super­
scr ipts  i, j ,  k, and e i s  given by a set of integer-valued input a r r ays  generated by 
separate computer programs.  These a r r a y s  a r e  given in reference 11. 

Whenever the left-hand member of one of the equations (53) to (55) o r  (57) to (59) i s  
one of the representative integrals, then the superscript  n o r  E or  6 (as the case 
may be) equals one which indicates the identity group transformation. Thus for  triangular 
elements the coefficients for the representative A-, B-, and C-integrals are Qy/Qp;  
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a n d  similarly for quadrilateral  elements. The a r r a y s  of Q -, S- ,  and Cf-values are given 
in reference 11. 

F i r s t  Procedure Illustrated 

To i l lustrate the use of this procedure, consider the integral A2ll1 for  the ST4 
element. Since A2ll1 was selected as one of'the representative integrals, it has n = 1, 
From the way in which the representative integrals have been ordered, A2ll1 i s  the 
eighth representative A-integral, and thus it has m = 8. Because A2l l1  is a represen­
tative integral, it is one of the integrals t o  be symbolically integrated. 
integration i s  

The result of this 

A2111 = -u1 - 2u2 + 3u3 (63)75 

and thus, by comparing equations (57) and (61) with equation (27), it follows that 

Q38 = 3 

(64) 


These four values are included in the Q-ar ray  for the ST4 element assembled during 
the symbolic phase of the computation. 

Seven other A-integrals for  the ST4 element a r e  a lso characterized by m = 8. 
They are A2221 ~ 3 2 2 2  ~ 3 3 3 2  A4333 A4443 ~ 4 4 4 1and ~ 4 1 1 1 ,andtheir  n 

9 

values are 5, 4,  6, 2, 8, 3, and 7, respectively. Thus, f rom equations (52) and (56), it 
follows that their  coefficients are 

R;l1l = -0.0133 R i l l 1  = -0.0267 R i l l 1  = 0.0400 

R2221 = -0.0133 R2221 = -0.0267 R2221 = -0.040011 2 3 

R31332 = -0.0133 R32332 = -0.0400 R;332 = 0.0267 J 
(Equations continued on next page) 
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R4333 = -0.01331 R42333 = 0.0400 R4333 = 0.0267 13 

Rt443 = -0.0133 4443 = 0.0400R2 Ri443 = -0.0267 
(65) 

R4441 = -0.01331 R%441= 0.0267 R4441 = -0.04003 

R i l l 1  = -0.0133 R i l l 1  = 0.0267 R i l l 1  = 0.0400 

These resul ts  are included in the R-ar ray  which i s  evaluated in the numerical phase of 
computation and stored for subsequent use. Then fo r  each finite element processed, the 
U's are evaluated by using equation (30) and after this evaluation the set of distinct A-
integrals (that is, the AijkP with i Z j  2 k 2  t)  is  numerically evaluated and saved in an 
array.  Included in this A-array are the eight integrals A 2 l l 1 ,  A2221, A3332, 
A4333, A4443, A4441, and A 4 l l 1 ,  whose coefficients are given in equations (65).  Fin­
ally, as various A-integrals are needed in the evaluation of the element characterist ic 
matrices,  they are quickly retrieved from the A-array. Because of the permutational 
symmetry of the indices, the 32 A-integrals on the following l ist  all depend on the Q­
values given in equations (64): 

A3222 = ~ 2 3 2 2= A2232 = A2223 A2333 = ~ 3 2 3 3= ~ 3 3 2 3= A3332 

A4333 = A3433 -- A3343 = A3334 A3444 = A4333 = A4434 - A4443 

A1444 - A4144 = A4414 = A4441 A4111 -- A1411 = A1141 = A1114 

In this way there can be as many as 192 A-integrals associated with a single representa­
tive A-integral. 

Second Procedure Based on Group Transformations 

The second procedure based on group transformations i s  used f o r  the evaluation of 
C -integrals fo r  nonparallelogram quadrilateral elements. Because of the greater  com­
plexity of the expressions for these integrals, the output f rom the symbolic phase of com­
putation consists of FORTRAN-coded formulas fo r  the representative integrals rather 
than a r r a y s  of integers as in the other cases.  These formulas are functions of the var i ­- ­
ables U1, s, t, Kl(s , t ) ,  Lz(s , t ) ,  L2(t,s) ,  and the V's. The procedure by which both 
a representative C-integral and the integrals related to  it by dihedral symmetry can be 
evaluated by use of many of the same FORTRAN statements is the following: 
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(1) Based on the superscr ipts  i and j ,  the program looks up the values of - ­

m = Z(i,j) and E = z(i,j), where m designates the representative integrals and des­ 


ignates the group transformation. 


(2) The quantities Val ,  V,2, Vag, s, t, 'E2(s,t), and %2(t,s) undergo the fol­
lowing transformations: 

-­ -
VCY 1 - v:~ = aW,1 i 

- -

where 

and the a's and d's are given in equations (60) and (61). (Computationally, it is much 
-faster to  use  eqs. (65) than to  reevaluate the logarithmic functions each t ime s and t 

are transformed.) The variables U1 and q (s , t )= L1(sfi,tTi) are not transformed. 
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(3) The FORTRAN code for  the s t h  representative integral i s  executed by using 
these transformed variables in place of the original variables. This technique of using 
the same FORTRAN statements to evaluate several  symmetry-related integrals signifi­
cantly reduces the program length. 

PERFORMANCE EVALUATION AND COMPARISON 

WITH NUMERICAL QUADRATURE 

In order to  assess the computational efficiency of the symbolic integration approach 
for  developing elemental matrices,  a computer program called SYMINSE (SYMbolically 
-INtegrated -Shell -Elements) was developed based on this approach. The program generates 
the element characterist ic a r r a y s  (stiffness, geometric stiffness, mass,  and load matrices) 
for  the six elements in table I. A detailed description of SYMINSE program is given in 
reference 11. 

The CPU t imes required for  the SYMINSE program to  generate the element charac­
ter is t ic  a r r ays  for  14 different shallow-shell elements and 14 flat-plate elements (with 
bending extensional coupling included) are given in table III. Also included in this table 
are the field lengths required for  these elements. No comparison i s  given of the CPU 
t imes required for  computing the characterist ic a r r ays  for these elements via the symbolic 
integration approach compared with the numerical quadrature approach. This is because 
any such comparison would, by necessity, be influenced by the efficiencies of both pro­
g rams  and would be dependent on compilers, operating systems, and computer hardware 
as well. 

Instead a quantitative measure of the efficiency of the symbolic integration approach 
i s  provided by giving a comparison of the number of floating-point multiplications and 
additions in a conventional numerical quadrature approach with the number required by 
the SYMINSE program. 

In the conventional numerical quadrature approach, the element st iffness matrix i s  
expressed in the form 

where [Be] i s  the strain-displacement matrix for  interpolation models, [C] i s  the matrix 
of shell stiffnesses, HQ are the weighting coefficients for numerical quadrature, p is 
the number of quadrature points, and r i s  the number of shape functions. 
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To generate the element stiffness matrix [K], the matrix of shell stiffnesses [C] is 

multiplied in turn by each of the weight coefficients Hg. Because of the symmetry of the 
element stiffness matrix, only the upper triangular par t  of [K] needs to  be evaluated. The 
individual contributions at each of the quadrature points are added t o  give the stiffness 
matrix. 

Table IV gives the number of pr imary  floating-point ari thmetic operations required 
t o  generate the matrix [K] as a function of the number of numerical quadrature points 1-1 
and the number of shape functions r. The numbers given in this table are based on the 
assumption that each element of [Bg]i s  a single quantity ( ra ther  than an  expression in the 
local coordinates) and therefore, the operation counts given are conservative, that is, less 
than the actual number of arithmetic operations. 

The number of floating-point arithmetic operations required t o  generate the element 
characterist ic a r r a y s  for  triangular and parallelogram elements using the SYMINSE p ro  -
gram are given in table V. Note that very few additional operations are required for  the 
evaluation of the geometric stiffness, the consistent mass ,  and the consistent load coeffi­
cients. The trapezoidal and nontrapezoidal quadrilateral (trapezium) elements are not in­
cluded in table V because their ari thmetic operation counts are more  difficult to obtain. 
However, the CPU t imes listed in table 111give a measure of the additional complexity for 
these cases. 

As a test for  the reliability of the operation count estimates, the ratios of the CPU 
t imes expended in evaluating integrals compared with the CPU t imes expended in forming 
the characterist ic a r r a y s  as linear combinations of integrals are given in table VI. These 
ratios may be compared with the comparable ratios of operation counts also given in 
table VI. The ratios are not very close but agree in order  of magnitude. 

Figure 4 shows the rat ios  of the ari thmetic operation counts involved in the evalua­
tion of the element stiffness a r r a y  for both the symbolic manipulation and numerical quad­
ra ture  procedures. 

The element characterist ic a r r ays  computed by the SYMINSE program have been 
verified by comparing them with those obtained by a program based on numerical quadra­
ture.  This latter program, although not optimized for  efficiency, ran much slower than 
the SYMINSE program. This fact together with the preceding comparison of operation 
counts strongly suggest that the symbolic integration approach presented herein holds 
much promise.  

POSSIBLE FURTHER IMPROVEMENTS AND EXTENSIONS 

On the basis  of the present study, the following remarks  regarding the use of sym­
bolic integration in the development of higher order  elements seem to be in order:  
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Figure 4. - Comparison of number of floating-point ari thmetic operations required 
t o  evaluate integrals using numerical quadrature and symbolic integration tech­
niques. r, number of shape functions. 

31 



(1) The analytic methods discussed herein can be easily implemented without modi­
fication for triangular elements with more  than ten nodes and fo r  parallelogram elements 
with more than eight nodes. 

(2) A minor modification of these methods is required for  trapezoidal and trapezium 
(nontrapezoid quadrilateral) elements with more  than eight nodes. For  these elements 
the g ' s  and 9's of equations (37) and (41) contain singularities when s or t equals 
zero.  These difficulties are eliminated by using logarithmic functions obtained by sub--
tracting off low order  t e r m s  in the Taylor series expansions of z(s), Ll(s, t) ,  and
-

L2(s,t) defined in equations (42) and (38). 


(3) A minor modification of the way in which symmetry transformations are applied 
is required for  quadrilateral elements with more than one bubble mode. This case is dis­
cussed in reference 9. 

(4) With these modifications the implementation of trapezoidal elements with more 
than eight nodes and/or with more than one bubble mode is not difficult. However, the 
implementation of trapezium elements with more than eight nodes or  with more than one 
bubble mode would be difficult because of the complexity of the analytic expressions. 

(5) For the trapezium elements a hybrid approach which combines the exact symbolic 
integration with either approximate analytic integration or numerical quadrature appears 
t o  have advantages over the purely numerical quadrature and the purely symbolic integra­
tion approaches. In the hybrid approach the A- and B-integrals are evaluated exactly by 
using symbolic integration and the C-integrals are evaluated approximately by numerical 
quadrature or symbolic integration. This  approach would retain the major advantages re­
sulting from symbolic integration of the A- and B-integrals and eliminate the difficulties 
associated with exact symbolic integration of the C -integrals. 

A count of floating-point ari thmetic operations suggests that even for  a purely 
numerical quadrature approach, the evaluation of A-, B-, and C-integrals followed by 
formation of the stiffness coefficients as a linear combination of these integrals i s  fas ter  
than the conventional approach discussed in the preceding section. This suggests that 
symbolic integration and numerical quadrature can be readily combined in one program. 

CONCLUDING REMARKS 

Computerized symbolic integration and group-theoretic techniques are employed in 
combination to  obtain analytic expressions fo r  the stiffness, geometric stiffness, consis -
tent mass  and consistent load coefficients of composite shallow-shell structural  elements. 
The elements are shear  flexible and have variable curvature. A stiffness (displacement) 
formulation is used with the fundamental unknowns consisting of both the displacement and 
rotation components of the reference surface of the shell. Both triangular and quadrilat­
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era1 elements are developed. The triangular elements developed have six and ten nodes. 
The quadrilateral elements have four and eight nodes and can have internal degrees of 
freedom associated with displacement modes which vanish along the edges of the element. 

The coefficients of the elemental matrices (stiffness, geometric stiffness, consistent 
mass ,  and consistent load) are expressed as linear combinations of integrals (over the 
element domain) whose integrands are products of shape functions and their  derivatives. 
The evaluation of the elemental matrices i s  thus divided into two separate problems -
determination of the coefficients in the l inear combination and evaluation of the integrals. 
The latter problem can be computationally the more t ime consuming and the present study 
a ims  at reducing the computational effort involved in this task through the use  of compu­
terized symbolic integration. 

Based upon a comparison between the number of floating-point ari thmetic operations 
required in the symbolic integration and traditional numerical quadrature approaches, it 
appears that the symbolic manipulation approach, as presented herein, i s  considerably 
more efficient and holds much promise. This i s  especially t rue  for the triangular, paral­
lelogram, and trapezoidal elements. 

For trapezium (nontrapezoidal quadrilateral) elements, however, a hybrid approach 
in which some of the integrals (the A- and B-integrals) a r e  evaluated exactly by symbolic 
manipulation and other integrals (the C -integrals) by either numerical quadrature or  by 
means of approximate analytic expressions appears t o  have advantages over a purely 
numerical quadrature o r  a purely symbolic integration approach. 

Langley Research Center 

National Aeronautics and Space Administration 

Hampton, Va. 23665 

October 3, 1975 
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APPENDIX A 

ELASTIC COEFFICIENTS OF LAMINATED SHELLS 

Elastic Stiffnesses of Layers  

(k)The nonzero stiffness coefficients (k) and ca3p3 of the kth orthotropic layer 
of the shell  referred to  the directions of principal elasticity are given by 

where the subscripts L and T denote the direction of f ibers  and the t ransverse direc­
tion, respectively, the superscript  k re fers  to  the kth layer, the E's are elastic mod­
uli, the G's are shear  moduli, and vLT i s  the Poisson's ra t io  measuring the s t ra in  in 
the T-direction due to a uniaxial normal stress in the L-direction 

The stiffness coefficients capyp and ca3p3 satisfy the following symmetry 
relationships : 
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and 

ca3p3  = c p 3 a 3  = c3ap3 = ca33p 

If the coordinates xa are rotated, the elastic coefficients capyp and ca3p3 
transform as components of fourth- and second-order tensors,  respectively. The trans­
formation law of these coefficients is expressed as follows: 

and 

Ca'3pp'3 = ca3p3 Qaa' Qpppp' 

where ca'p'y'p' and ca13p'3 are the elastic coefficients re fer red  to the new coordi­
nate system xa, and 

Elastic Coefficients of Shell 

The equivalent elastic stiffnesses of the shell are given by 

and 

where NL is the total number of layers  of the shell  and hk and hk-1 are the dis­
tances f rom the reference surface to  the top and bottom surfaces  of the kth layer, respec­
tively. The elastic compliances of the shell Aapyp, Bapyp, Gapyp, and Aa3p3 are 
obtained by inversion of the matrix of the elastic stiffnesses. (See ref. 5.) 
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The shell  stiffnesses and compliance coefficients satisfy symmetry and transforma­
tion relations s imilar  t o  those of the stiffness coefficients of individual layers.  

The density parameters  of the shell  a r e  given by 

where pik) is the m a s s  density of the kth layer of the shell. 
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APPENDIX B 

FORMULAS FOR THE COEFFICIENTS IN GOVERNING EQUATIONS 

FOR INDIVIDUAL ELEMENTS 

The expressions for  the independent stiffness coefficients in equation (12)are given 

by 

i j  

i j
&~+3,p+3= ( D a ~ p p  + c ~ 3 p 3NiNj) dS2 

The independent nonzero geometric stiffness coefficients are given by 

. .-
Ki\ = Jlgp 8,Ni 8gNj dS1 

The independent nonzero consistent mass coefficients are given by 
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i j
M33 = lQ(e) mONiNj dSt 

where 6 ( ~ pis the Kronecker delta on (Y and p. 

Finally, the consistent nodal load coefficients are given by 

In these equations the range of the lower case Latin indices is 1 - r where r is 
the number of shape functions, the range of the Greek indices is 1,2, and a repeated index 
denotes summation over the full range of the index. However, f o r  the elements with inter­
nal degrees of freedom (SQ5 and SQ9) the indices I! and m in these expressions have 
a range equal to the number of nodes in the element (that is, 4 for  the SQ5 element and 
8 for the SQ9 element). This amounts to  distributing the loading on the nodes of these 
elements with no loading associated with the internal degrees of freedom. 
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APPENDIX C 

SHAPE FUNCTIONS USED IN THE PRESENT STUDY 

The shape functions used in the present study are numbered as shown in figure 2. 

Four -Node Quadrilateral Elements (5q4 and 5q5) 

The shape functions for SQ4 are 

2
N =  (1 + - 42) 
4 

The shape functions for SQ5 are these functions plus the additional function representing 
the bubble mode. 

N5 = (1 - 512)(1 - 522) 

Eight -Node Quadrilateral Elements (5q8 and 5q9) 

The shape functions for SQ8 are 

39 


I.. 



I I l l  

APPENDIX C 


For SQ9 the additional shape function N9 is 

N9 = (l- t12)(1- 522) 

Triangular Elements (ST6 and ST10) 

The shape functions for ST6 are 

N1 = 51(251 - 1) 
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The shape functions for  STlO are 
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TABLE I. - CHARACTERISTICS OF THE STIFFNESS FINITE-ELEMENT MODELS 


DEVELOPED IN THE PRESENT STUDY 


- 1 

Number of internal I Total number of 
per elementl " l t  shape Number Of nodes degrees of freedom Approximation degrees of freedom, Designation 

per unknown 5r 

Quadrilateral 4 None Bilinear 

8 None Quadratic 

1 Quadratic plus bubble 
function 

Triangular 6 None Quadratic 

10 None Cubic 

20 SQ4 

40 sQ8 

45 sQ9 

30 ST6 

50 ST10 

TABLE ll.- THE NUMBER OF SYMBOLIC INTEGRATIONS NEEDED FOR TRIANGULAR AND QUADRILATERAL ELEMENTS 

. -__-
AijkP 

(i, j ,  k, P = 0 - r) B a k  (i, j = 0 - r; k = 1 - r; a = 1,2) C& (i, j = 1 - r; a,B = 1 , ~ )  
Element shape Number of shape functions ___-

per element, r Number of numerically Number of representative Number of numerically Number of representative Number of numerically Number of representativedistinct integrals, integrals required distinct integrals integrals required distinct integrals, integrals required(r+4)!/(4!r!] r(r+1)(r+Z) r(2r+l) 

a 495 84 720 54 136 8 

A 9 11 I 
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A 
A 

TABLE III.- CPU TIMES AND FIELD LENGTHS ON A CDC 6600 COMPUTER (USING THE RUN COMPILER 

UNDER SCOPE 3.0 OPERATING SYSTEM) FOR 14 SAMPLE PROBLEMS 

I Required field CPU time (in milliseconds) Total CPU time Total CPU time 

designation I Element shape lengths" (octal) to  compute A-, B-, and (in milliseconds), in milliseconds), 
C -integrals plate elements** 

SQ4 Parallelogram 33 456 8 22 36 I 
Trapezoid 
T rapezium 

12 
18 

26 
32 

40 
46 I 

! 

SQ 5 Parallelogram 34 276 10 30 ! 

Trapezoid 16 36 5852 I 
Trapezium 32 52 74 I 

ST6 Triangle 35 270 12 40 96 	
I 
/ 

SQ8 Parallelogram 40 167 18 62 212 I 

Trapezoid 40 167 44 88 


Trapez ium 42 662 170 214 238 ! 

SQ9 Parallelogram 42 077 20 76 260 

Trapezoid 42 077 58 114 298 

Trapezium 44 572 212 268 4 52 

ST 10 Triangle 44 257 28 98 4 14 

*Initial 1p6000 octal words more are needed t o  accommodate the loader and load tables. 
**Includes bending -extensional coupling. 

i 



TABLE 1V.- AN ESTIMATE FOR THE NUMBER OF ARITHMETIC OPERATIONS 


REQUIRED T O  GENERATE THE ELEMENT STIFFNESS MATRIX USING 


THE CONVENTIONAL NUMERICAL QUADRATURE PROCEDURE 


Computation s tep 

I Product of weighting coefficients and 

I 

Summation over p quadrature points 

Total 

-~ 
Operations 

Additions Multipl i r I 

0 

(5r)(5r + 1) 
EL2 

5
2 

rp(45r  + 137) (100r2 + 3401- + 6411.1 

4 5  

I 



- - 

- -  

-- 

- -  

TABLE V. - NUMBER OF FLOATING-POINT OPERATIONS REQUIRED TO GENERATE 

THE ELEMENT CHARACTERISTIC ARRAYS USING THE SYMINSE PROCRAM 

_ .  

Triangular Parallel0 r am (or 
Computation s tep Operations elements 1 rectangular7elements 

- .~-. _ _  ­. 

ST6 SQ5 sQ8 SQ9-~ - -- _ _  - -_ - ~ ._ - ­-

Evaluations of integrals Additions 515 3 51 1 0 2 9  1 3 7 1  
Multiplications 1306 860 2 669 3 609 

___ _.- - - .- - - -~ ~ _ _  
Formation of linear combinations Additions 6132 3045 14 148 17 685 

i jfor stiffness KI j  Multiplications 8490 4204 19 592 24 488 
______ - _ _ _  - - _ - ~ - - _ _ _  - -
Formation of linear combinations Additions 99 6 1  172 199 

-i jfor  a r r ays  KIj, Pi, and JIi:Multiplications 136 87 237 28 1 
- . - ~ .  - _ _  --. ~~. - _ - - -

Sum of these three steps Additions 6746 3457 15 349 19 255 
Mult ip1ications 9932 5151 22 498 	28 378 

-.-_ 

TABLE VI. - RATIOS OF CPU TIMES AND FLOATING-POINT ARITHMETIC 

OPERATION COUNTS FOR EVALUATING INTEGRALS AS FUNCTIONS 

OF FORMING THE CHARACTERISTIC ARRAYS FROM 

LINEAR COMBINATIONS OF THOSE INTEGRALS 

[All  values refer to the SYMINSE program] 

____. - - ._. - _.-. - - .. _ _  ~. ~ - _ _ _  

Ratio of Ratio ofElement designation Ratio of 
addition counts** multiplication counts** 

- -~ ~. - - ­-~ 

Parallelogram SQ4 

Parallelogram SQ5 

Triangle ST6 

Parallelogram SQ8 

Parallelogram SQ9 

Triangle ST 10 
~. 

._ . ... .. __ _.__ 

0.286 0.106 0.183 

.238 .113 -200 

.142 .00826 151 

.0928 .0719 .135 

.0833 .0767 .146 

.072 5 .0630 .122 
.. 

*Using data f rom table m. 
**Using data from table V. 
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